
# **SK50GH128T**



## **IGBT** module

#### **SK50GH128T**

**Target Data** 

### **Features**

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

## Typical Applications\*

Voltage regulator

| <b>Absolute Maximum Ratings</b> T <sub>c</sub> = 25 °C, unless otherwise specif |                                                         |                         |  |                  |       |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|--|------------------|-------|--|--|
| Symbol                                                                          | Conditions                                              |                         |  | Values           | Units |  |  |
| IGBT                                                                            |                                                         |                         |  |                  |       |  |  |
| $V_{CES}$                                                                       | T <sub>j</sub> = 25 °C                                  |                         |  | 1200             | V     |  |  |
| I <sub>C</sub>                                                                  | T <sub>j</sub> = 125 °C                                 | T <sub>s</sub> = 25 °C  |  | 70               | Α     |  |  |
|                                                                                 |                                                         | T <sub>s</sub> = 70 °C  |  | 50               | Α     |  |  |
| I <sub>CRM</sub>                                                                | $I_{CRM}$ = 2 x $I_{Cnom}$ , $t_p \le 1 ms$             |                         |  | 100              | Α     |  |  |
| $V_{GES}$                                                                       |                                                         |                         |  | 20               | V     |  |  |
| t <sub>psc</sub>                                                                | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V | T <sub>j</sub> = 125 °C |  | 10               | μs    |  |  |
| Inverse Diode                                                                   |                                                         |                         |  |                  |       |  |  |
| I <sub>F</sub>                                                                  | '                                                       | $T_s = 25 ^{\circ}C$    |  | 67               | Α     |  |  |
|                                                                                 |                                                         | $T_s = 70 ^{\circ}C$    |  | 50               | Α     |  |  |
| I <sub>FRM</sub>                                                                | $I_{FRM}$ = 2 x $I_{Fnom}$ , $t_p \le 1 ms$             |                         |  | 150              | Α     |  |  |
| I <sub>FSM</sub>                                                                | t <sub>p</sub> = 10 ms; half sine wave                  | T <sub>j</sub> = 125 °C |  | 550              | Α     |  |  |
| Module                                                                          |                                                         |                         |  |                  |       |  |  |
| I <sub>t(RMS)</sub>                                                             |                                                         |                         |  |                  | Α     |  |  |
| $T_{vj}$                                                                        |                                                         |                         |  | -40 <b>+</b> 150 | °C    |  |  |
| T <sub>stg</sub>                                                                |                                                         |                         |  | -40 <b>+12</b> 5 | °C    |  |  |
| V <sub>isol</sub>                                                               | AC, 1 min.                                              |                         |  | 2500             | V     |  |  |

| Characteristics $T_c =$            |                                                           |                                           | 25 °C, unless otherwise specified |      |      |          |  |
|------------------------------------|-----------------------------------------------------------|-------------------------------------------|-----------------------------------|------|------|----------|--|
| Symbol                             | Conditions                                                |                                           | min.                              | typ. | max. | Units    |  |
| IGBT                               |                                                           |                                           |                                   |      |      |          |  |
| $V_{GE(th)}$                       | $V_{GE} = V_{CE}$ , $I_C = 2 \text{ mA}$                  |                                           | 4,5                               | 5,5  | 6,5  | V        |  |
| I <sub>CES</sub>                   | V <sub>GE</sub> = 0 V, V <sub>CE</sub> = V <sub>CES</sub> | T <sub>j</sub> = 25 °C                    |                                   |      | 0,1  | mA       |  |
|                                    |                                                           | T <sub>j</sub> = 125 °C                   |                                   | 0,2  |      | mA       |  |
| I <sub>GES</sub>                   | V <sub>CE</sub> = 0 V, V <sub>GE</sub> = 20 V             | T <sub>j</sub> = 125 °C                   |                                   |      | 200  | nA       |  |
| $V_{CE0}$                          |                                                           | T <sub>j</sub> = 25 °C                    |                                   | 1,1  | 1,3  | V        |  |
|                                    |                                                           | T <sub>j</sub> = 125 °C                   |                                   | 1    | 1,2  | V        |  |
| r <sub>CE</sub>                    | V <sub>GE</sub> = 15 V                                    | T <sub>j</sub> = 25°C                     |                                   | 12   |      | mΩ       |  |
|                                    |                                                           | T <sub>j</sub> = 125°C                    |                                   | 22   |      | mΩ       |  |
| V <sub>CE(sat)</sub>               | I <sub>Cnom</sub> = 50 A, V <sub>GE</sub> = 15 V          | T <sub>j</sub> = 25°C <sub>chiplev.</sub> |                                   | 1,9  | 2,3  | V        |  |
|                                    |                                                           | $T_j = 125^{\circ}C_{chiplev.}$           |                                   | 2,1  |      | V        |  |
| C <sub>ies</sub>                   |                                                           |                                           |                                   | 4,5  |      | nF       |  |
| C <sub>oes</sub>                   | $V_{CE} = , V_{GE} = V$                                   | f = MHz                                   |                                   | 0,33 |      | nF       |  |
| C <sub>res</sub>                   |                                                           |                                           |                                   | 0,21 |      | nF       |  |
| $t_{d(on)}$                        |                                                           |                                           |                                   |      |      | ns       |  |
| ţ,                                 | $R_{Gon}$ = 15 $\Omega$                                   | V <sub>CC</sub> = 600V                    |                                   | •    |      | ns       |  |
| E <sub>on</sub>                    | D = 45 O                                                  | I <sub>C</sub> = 50A                      |                                   | 6    |      | mJ       |  |
| t <sub>d(off)</sub>                | $R_{Goff} = 15 \Omega$                                    | T <sub>j</sub> = 125 °C                   |                                   |      |      | ns<br>ns |  |
| t <sub>f</sub><br>E <sub>off</sub> |                                                           |                                           |                                   | 4,6  |      | mJ       |  |
| R <sub>th(j-s)</sub>               | per IGBT                                                  |                                           |                                   | 0,51 |      | K/W      |  |



## **SK50GH128T**



### **IGBT** module

#### **SK50GH128T**

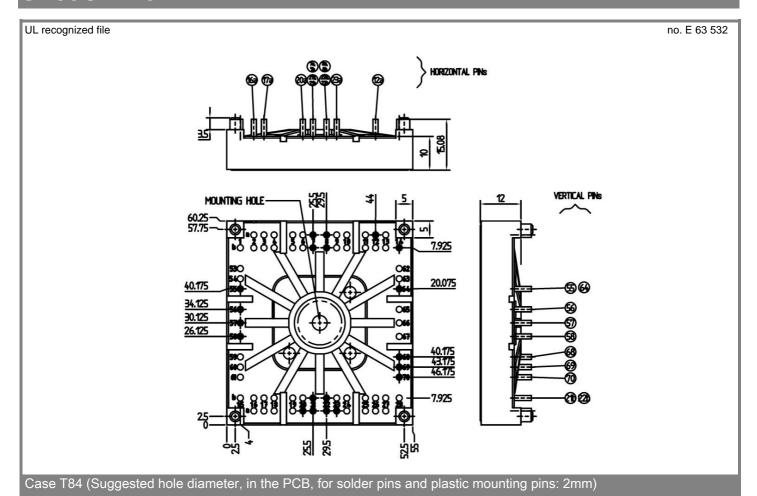
**Target Data** 

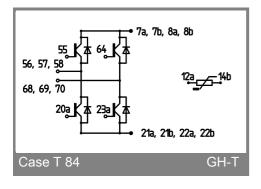
### **Features**

- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

## Typical Applications\*

Voltage regulator


| Characteristics                     |                                                 |                                          |      |        |      |         |  |  |
|-------------------------------------|-------------------------------------------------|------------------------------------------|------|--------|------|---------|--|--|
| Symbol                              | Conditions                                      |                                          | min. | typ.   | max. | Units   |  |  |
| Inverse Diode                       |                                                 |                                          |      |        |      |         |  |  |
| $V_F = V_{EC}$                      | $I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$ |                                          |      | 2      |      | V       |  |  |
|                                     |                                                 | $T_j = 125  ^{\circ}C_{\text{chiplev.}}$ |      | 1,8    |      | V       |  |  |
| $V_{F0}$                            |                                                 | T <sub>j</sub> = 125 °C                  |      | 1      | 1,2  | V       |  |  |
| r <sub>F</sub>                      |                                                 | T <sub>j</sub> = 125 °C                  |      | 16     | 22   | mΩ      |  |  |
| I <sub>RRM</sub><br>Q <sub>rr</sub> | I <sub>F</sub> = 50 A                           | T <sub>j</sub> = 125 °C                  |      |        |      | Α<br>μC |  |  |
| E <sub>rr</sub>                     | V <sub>CC</sub> =600V                           |                                          |      | 4      |      | mJ      |  |  |
| R <sub>th(j-s)D</sub>               | per diode                                       |                                          |      | 0,7    |      | K/W     |  |  |
|                                     | Freewheeling Diode                              |                                          |      |        |      |         |  |  |
| $V_F = V_{EC}$                      | $I_{Fnom} = A; V_{GE} = V$                      | $T_j = {^{\circ}C_{chiplev.}}$           |      |        |      | V       |  |  |
| $V_{F0}$                            |                                                 | $T_j = ^{\circ}C$                        |      |        |      | V       |  |  |
| r <sub>F</sub>                      |                                                 | $T_j = ^{\circ}C$ $T_j = ^{\circ}C$      |      |        |      | V       |  |  |
| I <sub>RRM</sub><br>Q <sub>rr</sub> | I <sub>F</sub> = A                              | T <sub>j</sub> = °C                      |      |        |      | Α<br>μC |  |  |
| E <sub>rr</sub>                     |                                                 |                                          |      |        |      | mJ      |  |  |
|                                     | per diode                                       |                                          |      |        |      | K/W     |  |  |
| $M_s$                               | to heat sink                                    |                                          | 2,5  |        | 2,75 | Nm      |  |  |
| w                                   |                                                 |                                          |      | 60     |      | g       |  |  |
| Temperature sensor                  |                                                 |                                          |      |        |      |         |  |  |
| R <sub>100</sub>                    | $T_s = 100^{\circ}C (R_{25} = 5k\Omega)$        |                                          |      | 493±5% |      | Ω       |  |  |


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.



# **SK50GH128T**



