

Trench IGBT modules

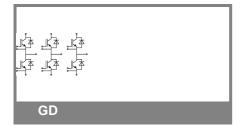
SKiM455GD12T4D1

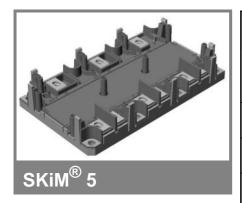
Preliminary Data

Features

- IGBT 4 = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability

Typical Applications*


- High Reliability AC inverter drives
- UPS


Remarks

- Case temperature limited to T_c = 125°C max
- $T_{j,max}$ of the diode is limited to $150^{\circ}C$

Absolute Maximum Ratings $T_c = 25 ^{\circ}\text{C}$, unless otherwise specified							
Symbol	Conditions		Values	Units			
IGBT							
V_{CES}	$T_j = {^{\circ}C}$		1200	V			
I _C	T _j = 150 °C	T _{heatsink} = 25 °C	400	Α			
		T _{heatsink} = 70 °C	305	Α			
I _{CRM}	I _{CRM} = 3xI _{CNOM}		1350	Α			
V_{GES}			± 20	V			
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C	10	μs			
Inverse Diode							
I _F	T _j = 150 °C	T _{heatsink} = 25 °C	295	Α			
		T _{heatsink} = 70 °C	215	Α			
I _{FRM}	$I_{FRM} = 2 \times I_{FNOM}$		600	Α			
Module							
I _{t(RMS)}				Α			
T_{vj}			-40 + 150	°C			
T _{stg}			-40 + 125	°C			
V _{isol}	AC, 1 min.		2500	V			

Characteristics T _c =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 18 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,3	mA
V _{CE0}		T _j = 25 °C		0,8	0,9	V
		T _j = 125 °C		0,7	0,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,2	2,4	mΩ
		T _j = 125°C		3,1	3,3	mΩ
V _{CE(sat)}	I _{Cnom} = 450 A, V _{GE} = 15 V			1,8	2	V
		$T_j = 125^{\circ}C_{chiplev}$		2,1	2,3	V
C _{ies}				27,9		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,7		nF
C _{res}				1,5		nF
Q_G	V _{GE} = -8V/+15V			2600		nC
R _{Gint}	T _j = 25 °C			1,7		Ω
t _{d(on)}				265		ns
t,	$R_{Gon} = 1 \Omega$	V _{CC} = 600V		60		ns
Ėon	di/dt = 8200 A/μs	I _C = 450A		34		mJ
^L d(off)	$R_{Goff} = 1 \Omega$	T _j = 125 °C		470		ns
t _f	di/dt = 5300 A/μs	$V_{GE} = \pm 15V$		65		ns
E_{off}				40		mJ
$R_{th(j-s)}$	per IGBT			0,14		K/W

Trench IGBT modules

SKiM455GD12T4D1

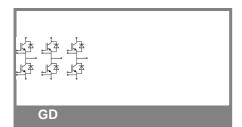
Preliminary Data

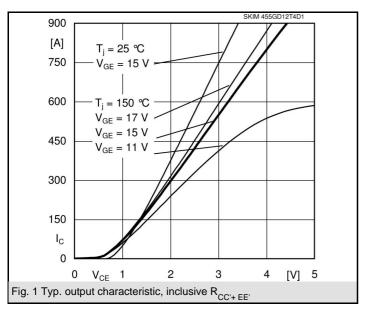
Features

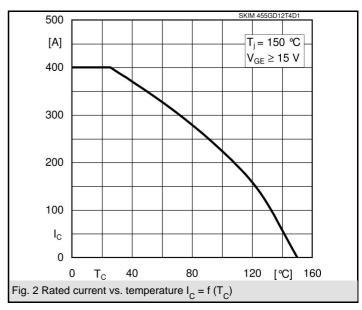
- IGBT 4 = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability

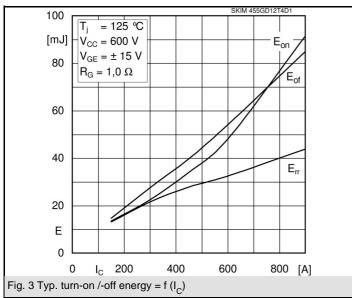
Typical Applications*

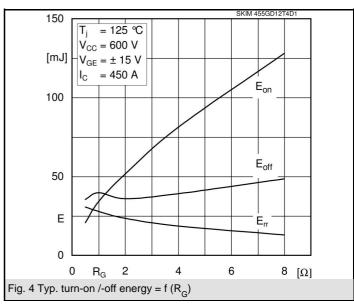
- High Reliability AC inverter drives
- UPS

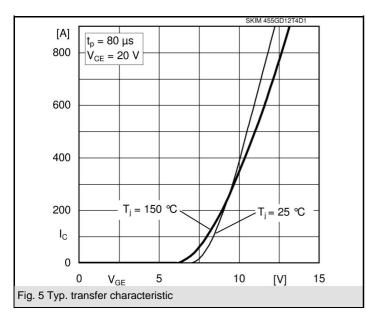

Remarks

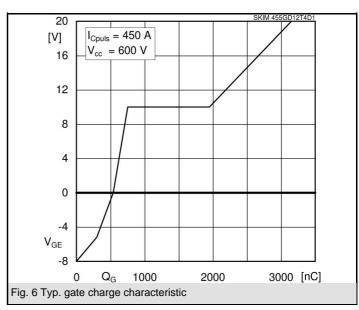

- Case temperature limited to T_c = 125°C max
- T_{j,max} of the diode is limited to 150°C

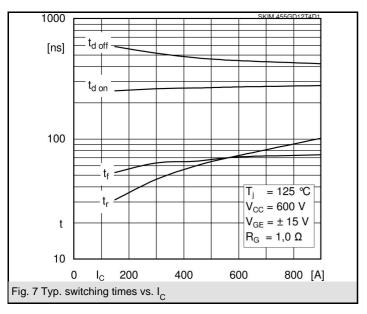

Characteristics								
Symbol	Conditions	ĺ	min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	$I_{Fnom} = 450 \text{ A}; V_{GE} = 0 \text{ V}$	T _j = 25 °C _{chiplev.}		2,3	2,8	V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		2,2	2,7	V		
V_{F0}		T _j = 25 °C		1,2	1,6	V		
		T _j = 125 °C		0,9	1,3	V		
r _F		T _j = 25 °C		2,3	2,7	mΩ		
		T _j = 125 °C		2,8	3,1	$m\Omega$		
I _{RRM}	I _F = 450 A	T _i = 125 °C		500		Α		
Q_{rr}	di/dt = 9000 A/µs			64,5		μC		
E _{rr}	V _{GE} = -15V			27,8		mJ		
$R_{th(j-s)}$	per diode			0,19		K/W		
Module								
L _{CE}					20	nΗ		
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,9		mΩ		
		T _{case} = 125 °C		1,1		mΩ		
M _s	to heat sink M5					Nm		
M _t	to terminals M6		4		5	Nm		
w					460	g		
Temperature sensor								
R _{TS}	T = 25 (100)°C			1 (1,67)		kΩ		
Tolerance	T = 25 (100)°C			3 (2)		%		

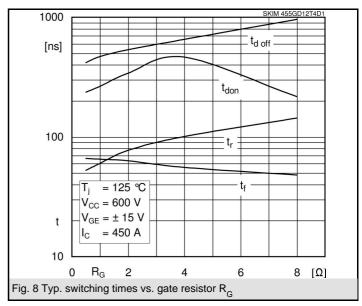

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

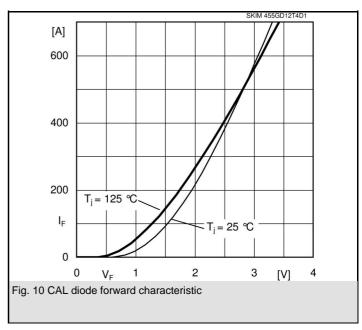

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

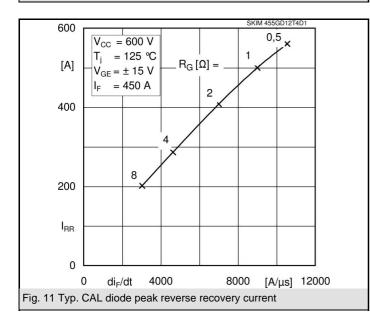


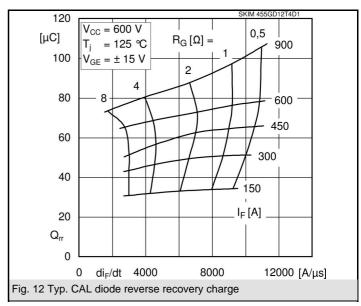


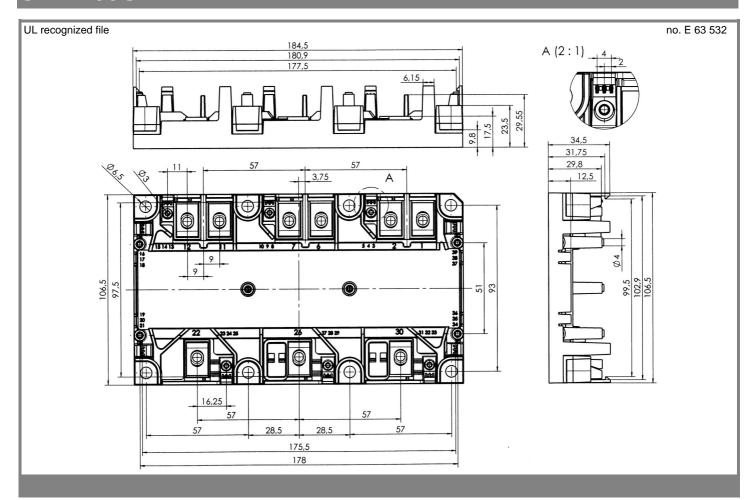


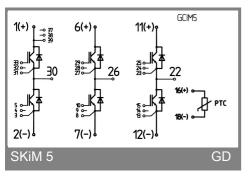












5 03-03-2008 LAN © by SEMIKRON